sábado, 29 de octubre de 2016

Biomoléculas

Proteínas

Por sus propiedades físico-químicas, las proteínas se pueden clasificar en proteínas simples (holoproteidos), formadas solo por aminoácidos o sus derivados; proteínas conjugadas (heteroproteidos), formadas por aminoácidos acompañados de sustancias diversas, y proteínas derivadas, sustancias formadas por desnaturalización y desdoblamiento de las anteriores. Las proteínas son necesarias para la vida, sobre todo por su función plástica (constituyen el 80 % del protoplasma deshidratado de toda célula), pero también por sus funciones biorreguladoras (forman parte de las enzimas) y de defensa (los anticuerpos son proteínas).3

Las proteínas desempeñan un papel fundamental para la vida y son las biomoléculas más versátiles y diversas. Son imprescindibles para el crecimiento del organismo y realizan una enorme cantidad de funciones diferentes, entre las que destacan:

Estructural. Esta es la función más importante de una proteína (Ej: colágeno)
Inmunológica (anticuerpos)
Enzimática (Ej: sacarasa y pepsina)
Contráctil (actina y miosina)
Homeostática: colaboran en el mantenimiento del pH (ya que actúan como un tampón químico)
Transducción de señales (Ej: rodopsina)
Protectora o defensiva (Ej: trombina y fibrinógeno)
Producción de costras (ej:fibrina).
Las proteínas están formadas por aminoácidos. Las proteínas de todos los seres vivos están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas tiene una célula, un tejido y un organismo.

Las proteínas se sintetizan dependiendo de cómo se encuentren regulados los genes que las codifican. Por lo tanto, son susceptibles a señales o factores externos. El conjunto de las proteínas expresadas en una circunstancia determinada es denominado proteoma.

Los prótidos o proteínas son biopolímeros, están formadas por un gran número de unidades estructurales simples repetitivas (monómeros) denominado aminoácidos, unidas por enlaces peptídicos. Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las diferencian de las disoluciones de moléculas más pequeñas. Muchas proteínas presentan carga neta en ciertos rangos de pH del medio. Por ello pueden considerarse ionómeros.

Por hidrólisis, las moléculas de proteína se dividen en numerosos compuestos relativamente simples, de masa molecular pequeña, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.

Todas las proteínas tienen carbono, hidrógeno, oxígeno y nitrógeno, y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, por término medio, 16 % de la masa total de la molécula; es decir, cada 6,25 g de proteína contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de N de la misma.

Mediante una familia de métodos denominados de síntesis peptídica es posible sintentizar químicamente proteínas pequeñas. Estos métodos dependen de técnicas de síntesis orgánica como la ligación para producir péptidos en gran cantidad.6 La síntesis química permite introducir aminoácidos no naturales en la cadena polipeptídica, como por ejemplo amino ácidos con sondas fluorescentes ligadas a sus cadenas laterales.










LÍPIDOS
Los lípidos son un conjunto de moléculas orgánicas (la mayoría biomoléculas), que están constituidas principalmente por carbono e hidrógeno y en menor medida por oxígeno. También pueden contener fósforo, azufre y nitrógeno. Debido a su estructura, son moléculas hidrófobas (insolubles en agua), pero son solubles en disolventes orgánicos como la bencina, el benceno y el cloroformo. 
Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (como los triglicéridos), estructural (como los fosfolípidos de las bicapas) y reguladora (como las hormonas esteroides).
Los lípidos son moléculas muy diversas; unos están formados por cadenas alifáticas saturadas o insaturadas, en general lineales, pero algunos tienen anillos (aromáticos). Algunos son flexibles, mientras que otros son rígidos o semiflexibles hasta alcanzar casi una total Flexibilidad mecánica molecular; algunos comparten carbonos libres y otros forman puentes de hidrógeno.
La mayoría de los lípidos tiene algún tipo de carácter no polar, es decir, poseen una gran parte apolar o hidrofóbico ("que le teme al agua" o "rechaza el agua"), lo que significa que no interactúa bien con solventes polares como el agua, pero sí con la gasolina, el éter o el cloroformo. Otra parte de su estructura es polar o hidrofílica ("que tiene afinidad por el agua") y tenderá a asociarse con solventes polares como el agua; cuando una molécula tiene una región hidrófoba y otra hidrófila se dice que tiene carácter de anfipático. La región hidrófoba de los lípidos es la que presenta solo átomos de carbono unidos a átomos de hidrógeno, como la larga "cola" alifática de los ácidos grasos o los anillos de esterano del colesterol; la región hidrófila es la que posee grupos polares o con cargas eléctricas, como el hidroxilo (–OH) del colesterol, el carboxilo (–COOH) de los ácidos grasos, el fosfato (–PO4) de los fosfolípidos.
Por otra parte, los lípidos son largas cadenas de hidrocarburos y pueden tomar ambas formas: cadenas alifáticas saturadas (un enlace simple entre diferentes enlaces de carbono) o insaturadas (unidos por enlaces dobles o triples). Esta estructura molecular es no polar.
Los lípidos son un grupo muy heterogéneo que usualmente se subdivide en dos, atendiendo a que posean en su composición ácidos grasos (lípidos saponificables) o no los posean (lípidos insaponificables):
Lípidos saponificables:
Simples. Son los que contienen carbono, hidrógeno y oxígeno.
Ácidos grasos: Son las unidades básicas de los lípidos saponificables, y consisten en moléculas formadas por una larga cadena hidrocarbonada (CH2) con un número par de átomos de carbono (2-24) y un grupo carboxilo(COOH) terminal. La presencia de dobles enlaces en el ácido graso reduce el punto de fusión. Los ácidos grasos se dividen en saturados e insaturados.
Acilglicéridos: Los acilglicéridos o acilgliceroles son ésteres de ácidos grasos con glicerol (glicerina), formados mediante una reacción de condensación llamada esterificación. Una molécula de glicerol puede reaccionar con hasta tres moléculas de ácidos grasos, puesto que tiene tresgrupos hidroxilo.
Según el número de ácidos grasos que se unan a la molécula de glicerina, existen tres tipos de acilgliceroles:
·         Monoglicéridos: solo existe un ácido graso unido a la molécula de glicerina.
·         Diacilglicéridos: la molécula de glicerina se une a dos ácidos grasos.
·         Triacilglicérido o triglicéridos: la glicerina está unida a tres ácidos grasos. Son los más importantes y extendidos de los tres.
Los triglicéridos constituyen la principal reserva energética de los animales, en los que constituyen las grasas; en los vegetales constituyen los aceites. El exceso de lípidos es almacenado en grandes depósitos en el tejido adiposo de los animales.
 Céridos: Las ceras son moléculas que se obtienen por esterificación de un ácido graso con un alcohol monovalente lineal de cadena larga. Por ejemplo la cera de abeja. Son sustancias altamente insolubles en medios acuosos y a temperatura ambiente se presentan sólidas y duras. En los animales las podemos encontrar en la superficie del cuerpo, piel, plumas, cutícula, etc. En los vegetales, las ceras recubren en la epidermis de frutos, tallos, junto con la cutícula o la suberina, que evitan la pérdida de agua por evaporación.
Complejos: Son los lípidos que, además de contener en su molécula carbono, hidrógeno y oxígeno, contienen otros elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares.
Fosfolípidos: Los fosfolípidos se caracterizan por poseer un grupo de naturaleza fosfato que les otorga una marcada polaridad. Se clasifican en dos grupos, según posean glicerol esfingosina.
Fosfoesfingolípidos: Los fosfoesfingolípidos son esfingolípidos con un grupo fosfato, tienen una arquitectura molecular y unas propiedades similares a los fosfoglicéridos. No obstante, no contienen glicerol, sino esfingosina, un aminoalcohol de cadena larga al que se unen un ácido graso, conjunto conocido con el nombre de ceramida; a dicho conjunto se le une un grupo fosfato y a éste un aminoalcohol; el más abundante es la esfingomielina, en la que el ácido graso es el ácido lignocérico y el aminoalcohol la colina; es el componente principal de la vaina de mielina que recubre los axones de las neuronas.

Glucolípidos: Los glucolípidos son esfingolípidos formados por una ceramida (esfingosina + ácido graso) unida a un glúcido, careciendo, por tanto, de grupo fosfato. Al igual que los fosfoesfingolípidos poseen ceramida, pero a diferencia de ellos, no tienen fosfato ni alcohol. Se hallan en las bicapas lipídicas de todas las membranas celulares, y son especialmente abundantes en el tejido nervioso; el nombre de los dos tipos principales de glucolípidos alude a este hecho:
·         Cerebrósidos. Son glucolípidos en los que la ceramida se une un monosacárido (glucosa o galactosa) o a un oligosacárido.
·         Gangliósidos. Son glucolípidos en los que la ceramida se une a un oligosacárido complejo en el que siempre hay ácido siálico.
Los glucolípidos se localizan en la cara externa de la bicapa de las membranas celulares donde actúan de receptores.
Lípidos insaponificables:
Terpenos: Los terpenos, terpenoides o isoprenoides, son lípidos derivados del hidrocarburo isopreno (o 2-metil-1,3-butadieno). Los terpenos biológicos constan, como mínimo de dos moléculas de isopreno. Algunos terpenos importantes son los aceites esenciales (mentol, limoneno, geraniol), el fitol (que forma parte de la molécula de clorofila), las vitaminas A, K y E, los carotenoides (que son pigmentos fotosintéticos) y el caucho (que se obtiene del árbol Hevea brasiliensis).
Esteroides: Los esteroides son lípidos derivados del núcleo del hidrocarburo esterano (o ciclopentanoperhidrofenantreno), esto es, se componen de cuatro anillos fusionados de carbono que posee diversos grupos funcionales (carbonilohidroxilo) por lo que la molécula tiene partes hidrofílicas e hidrofóbicas (carácter anfipático). Entre los esteroides más destacados se encuentran los ácidos biliares, las hormonas sexuales, las corticosteroides, la vitamina D y el colesterol.
Prostaglandinas: Los eicosanoides o prostaglandinas son lípidos derivados de los ácidos grasos esenciales de 20 carbonos tipo omega-3 y omega-6. Los principales precursores de los eicosanoides son el ácido araquidónico, el ácido linoleico y el ácido linolénico. Todos los eicosanoides son moléculas de 20 átomos de carbono y pueden clasificarse en tres tipos: prostaglandinastromboxanos y leucotrienos.
Cumplen amplias funciones como mediadores para el sistema nervioso central, los procesos de la inflamación y de la respuesta inmune tanto de vertebrados como invertebrados. Constituyen las moléculas involucradas en las redes de comunicación celular más complejas del organismo animal, incluyendo el hombre.




















Ácidos Nucleícos
Los ácidos nucleicos son grandes polímeros formados por la repetición de monómeros denominados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, largas cadenas; algunas moléculas de ácidos nucleicos llegan a alcanzar tamaños gigantescos, con millones de nucleótidos encadenados. Los ácidos nucleicos almacenan la información genética de los organismos vivos y son los responsables de la transmisión hereditaria. Existen dos tipos básicos, el ADN y el ARN.
El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, que en el año 1869 aisló los núcleos de las células una sustancia ácida a la que llamó nucleína, nombre que posteriormente se cambió a ácido nucleico. Posteriormente, en 1953, James Watson y Francis Crick descubrieron la estructura del ADN, empleando la técnica de difracción de rayos X.
https://upload.wikimedia.org/wikipedia/commons/thumb/1/16/DNA_orbit_animated.gif/220px-DNA_orbit_animated.gif
Existen dos tipos de ácidos nucleicos: ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), estos se diferencian:


  • por el glúcido (la pentosa es diferente en cada uno; ribosa en el ARN y desoxirribosa en el ADN);
  • por las bases nitrogenadas: adenina, guanina, citosina y timina, en el ADN; adenina, guanina, citosina y uracilo, en el ARN;
o    en la masa molecular: la del ADN es generalmente mayor que la del ARN.


Entre las principales funciones de estos ácidos tenemos:

·         - Duplicación del ADN
·         - Expresión del mensaje genético:
·         - Transcripción del ADN para formar ARN y otros
·         - Traducción, en los ribosomas, del mensaje contenido en el  ARN a proteínas.
Las unidades que forman los ácidos nucleicos son los nucleótidos. Cada nucleótido es una molécula compuesta por la unión de tres unidades: un monosacárido de cinco carbonos (una pentosa, ribosa en el ARN y desoxirribosa en el ADN), una base nitrogenada purínica (adenina, guanina) o pirimidínica (citosina, timina o uracilo) y un grupo fosfato (ácido fosfórico). Tanto la base nitrogenada como los grupos fosfato están unidos a la pentosa.
La unidad formada por el enlace de la pentosa y de la base nitrogenada se denomina nucleósido. El conjunto formado por un nucleósido y uno o varios grupos fosfato unidos al carbono 5' de la pentosa recibe el nombre de nucleótido. Se denomina nucleótido-monofosfato (como el AMP) cuando hay un solo grupo fosfato, nucleótido-difosfato (como el ADP) si lleva dos y nucleótido-trifosfato (como el ATP) si lleva tres.
Características del ADN
El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones.

Estructuras ADN

  • Estructura primaria. Una cadena de desoxirribonucleótidos (monocatenario) es decir, está formado por un solo polinucleótido, sin cadena complementaria. No es funcional, excepto en algunos virus.
  • Estructura secundaria. Doble hélice, estructura bicatenaria, dos cadenas de nucleótidos complementarias, antiparalelas, unidas entre sí por las bases nitrogenadas por medio de puentes de hidrógeno. Está enrollada helicoidalmente en torno a un eje imaginario. Hay tres tipos:
    • Doble hélice A, con giro dextrógiro, pero las vueltas se encuentran en un plano inclinado (ADN no codificante).
    • Doble hélice B, con giro dextrógiro, vueltas perpendiculares (ADN funcional).
    • Doble hélice Z, con giro levógiro, vueltas perpendiculares (no funcional); se encuentra presente en los parvovirus.                                     http://biologiainteresante.com/wp-content/uploads/2014/09/ADN.jpeg

Características del ARN

El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico.El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas y estables.

 

 

Tipos de ARN:

·        El ARN mensajero se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN. Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma. Poco después de su síntesis sale del núcleo a través de los poros nucleares asociándose a los ribosomas donde actúa como matriz o molde que ordena los aminoácidos en la cadena proteica. Su vida es muy corta: una vez cumplida su misión, se destruye.

  • El ARN de transferencia existe en forma de moléculas relativamente pequeñas. La única hebra de la que consta la molécula puede llegar a presentar zonas de estructura secundaria gracias a los enlaces por puente de hidrógeno que se forman entre bases complementarias, lo que da lugar a que se formen una serie de brazos, bucles o asas. Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteína.
  • El ARN ribosómico es el más abundante (80 por ciento del total del ARN), se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas. El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.
    http://image.slidesharecdn.com/rnatrasncription-120316184344-phpapp01/95/transcripcion-del-adn-2-728.jpg?cb=1369070899
Básicamente por ácidos nucleicos están formados varios monómeros comúnmente llamados nucleótidos, estos nucleótidos se unen unos a otros y dormán enlaces muy largos, podemos ácidos nucleicos podemos entender que hablamos del ADN que es el acido desoxirribonucleico, es el encargado de transmitir nuestro caracteres hereditarios a otro organismo a nuestra descendencia como pudimos observar anteriormente existen dos tipos de ácidos nucleicos que es el ADN y el ARN que generalmente se diferencian por su estructura molecular.

Las bases nitrogenadas forman una parte importante en los ácidos nucleicos ya que son los que determinan las funciones del ADN y el ARN.
Por lo tanto nuestra estructura y todo lo que somos lo determina el ADN es lo que heredamos de nuestro progenitores.

No hay comentarios:

Publicar un comentario